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Steady flows drawn from a stably stratified reservoir 

By T. BROOKE BENJAMIN 
Mathematical Institute, 24/29 St. Giles, Oxford OX1 3LB 

Perfect-fluid theory is applied to the description of steady motions that can be gener- 
ated as the outflow into a horizontal channel from a large reservoir of incompressible 
heavy fluid whose density is an arbitrary decreasing function of height. A particular 
aim is to pinpoint the significance of an already known class of flows, called self 
similar, which satisfy the approximate (shallow-water) equations applicable when the 
horizontal scale of the motion greatly exceeds its vertical scale, but which have not 
until now been shown to match the downstream conditions that primarily determine 
the motion in practice. 

New variational principles are introduced characterizing the class of self-similar 
flows: in $ 2  there is a characterization in terms of flow force among parallel flows 
realized asymptotically in a uniform channel, in $ 3  among a wider range of possi- 
bilities including periodic flows, and in $6 among supercritical flows realized in a 
convergent-divergent channel. Aspects of general flows in channels of gradually 
varying breadth are treated in $94 and 5, including the remarkable fact, proven in 
$5, that every steady flow outside but close to the self-similar class must somewhere 
undergo a local crisis unaccountable by the shallow-water approximation. Practical 
interpretations afforded by the theoretical results are noted in 3 7 .  

1. Introduction 
It has been known for some time that the equations describing the steady, gradually 

converging flow of a stably stratified perfect fluid from a large reservoir into a hori- 
zontal channel have a simple solution, according to which the stream-surfaces dupli- 
cate those in a corresponding open-channel flow of a homogeneous fluid. Wood (1968) 
appears to have been the first to put this fact on record, although evidently it was then 
already known to others. For the special flows in question he introduced the term self 
similar, emphasizing their property that the heights of stream-surfaces are every- 
where in the same ratio, and this useful term will be readopted here. These flows were 
also demonstrated by Yih (1969)) whose theoretical description went a little further 
than Wood’s and included an appraisal of the shallow-water approximatians that 
underlie the mathematical model. Yih’s account was properly cautious, moreover, 
about the physical significance attributable to the special class of flows. Other steady 
flows were recognized to be possible from any given reservoir that either has multiple 
discrete layers or is continuously stratified, and it was noted that without evidence of 
the special flows satisfying terminal conditions that can be imposed downstream, 
there is no apriori reason for their ever being realizable. 

Various outstanding questions concerning the class of self-similar flows will be 
answered here, most notably the question of their realizability in practically signi- 
ficant situations. In  the case of drainage from a layer in the reservoir bounded by a 
discontinuity in dcnsity, a self-similar flow will be shown to arise as the extreme state 
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before hitherto stagnant fluid is drawn into motion; and in the case of selective with- 
drawal from a continuously stratified reservoir, self-similar flows will be shown always 
to have priority. The theoretical models studied are idealized, taking no account of 
effects due to viscosity or diffusion, but the conclusions therefrom should have bearing 
on certain natural flows on a large scale (cf. Wood 1968, $ 1) .  

Items of theory are developed in $92-6, and finally the powerful interpretations 
that they provide are assembled in $ 7 .  A simple but very informative variational 
principle in terms of flow force (horizontal pressure force plus momentum flux) is 
established in $ 2 for horizontal flows drawn from a reservoir into a straight channel, 
and the principle is extended in $ 3 to include wavy flows. In  $ 4 the theory of steady 
flows in a channel of gradually varying breadth is reviewed, the self-similar solution 
of the approximate hydrodynamic problem is noted, and some difficult questions 
posed by flows other than the self-similar one are defined. I n  $ 5  it is proved that no 
steady flow neighbouring on the self-similar flow exists corresponding to a smooth 
solution of the shallow-water equations, and in $ 6  a second, much less transparent 
variational principle is given relating to supercritical flows in the divergent part of 
a channel with a throat. 

The concluding discussion in $ 7  relies on arguments that generalize the following 
elementary idea from open-channel hydraulics. Suppose a stream of water having 
asymptotic depth h and velocity u is drawn from a large reservoir into a horizontal 
open channel of rectangular cross-section. The flow force of the stream is given by 
S = p(u2h ++gh2),  where p is the (uniform) density; and the Bernoulli law gives 
u2 = 2g(H - h),  where H is the height of the free surface in the reservoir above the 
bottom of the channel. Thus one has S =pg(BHh - $h2), which achieves a unique maxi- 
mum value S,=+pgH2 when h=$H and consequently u2=gh.  If the reservoir is 
connected through a contraction, the flow can, of course, be controlled from the 
downstream end of the channel, say by lowering a weir or by operating a pump which 
takes up the water. I n  every case an adjustment increasing the steady outflow can be 
reckoned to induce an increase in the flow force of the oncoming stream, which has 
to match the greater rate of extraction of momentum from the system; but the 
preceding simple result shows that upon S being raised to the value S,, no further 
increase can in any way be induced. It is impossible to realize a stream with S > S, 
by outflow from the given reservoir. This interpretation of the critical condition at  
which downstream control is lost may be appreciated to provide better physical 
insights, and to admit wider generalization, than the more usual one which focuses 
on the maximum of flow rate uh for a given H .  An immediate advantage of it, general- 
ized in $3, is that  the maximum principle for S easily extends to wavy flows, every one 
of which is known to realize a smaller flow-force value than a uniform flow with the 
same H (Benjamin & Lighthill 1954). 

2. Steady flows into a uniform channel 
As indicated in figure 1 ,  a stably stratified fluid lying on a rigid horizontal plane is 

considered to flow from an infinitely wide reservoir into a straight channel, whose 
cross-section following a smooth entry region is rectangular and uniform. The motion 
is assumed to  be steady, and the fluid to be inviscid, incompressible and non-diffusive, 
so that its density has a constant value on each stream-surface, varying only among 
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I *- 
FIGURE 1. Illustration of flow from a stratified reservoir into a straight channel. 

these surfaces. Thus, if z denotes their original heights above the bottom in the 
reservoir where the fluid is a t  rest, the density is representable everywhere by 

All pressures will be expressed relative to the pressure a t  the level z = H in the 
reservoir, below which level the fluid is drawn into the channel and above which none 
flows when the steady motion is established. According to the hydrostatic law, the 
pressure a t  lower levels in the reservoir is given by 

P = P ( 4 .  

and hence the total head of the fluid above the bottom by 

where ps = p ( H  - ). We also need the notation p+ = p ( H  + ), supposing for now that 
p+ < ps (see figure l ) ,  but the case p+ = ps will be covered. I n  (2.1), p’ denotes dpldz, 
being a non-positive function by the assumption of stability, and henceforth accents 
will be used only to denote derivatives of z-dependent functions. 

If the flow approached asymptotically along the channel is horizontal (i.e. free 
from waves), the height y of the stream-surfaces in it is a function of z alone, and we 
write y ( H  - ) = h. Since the fluid is a t  rest a t  heights above h, the layer between heights 
h and N must be filled with stagnant fluid of density p+. Hence the pressure in the 
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horizontally moving fluid is given, according to the hydrostatic law, by 

H 

= 9 [P' ( H -  4 + Psh - PY -1 YP' d t ) .  (2 .2)  

If q is the magnitude of the velocity in the fluid, the Bernoulli law tells us that 

R = SYP + P + QPQ2 (2.3) 

is constant on any stream surface, specified by the value of z ;  and in the asymptotic 
flow q2 = u2, the square of the single, horizontal component u(z) of velocity. Hence, 
using the expressions (2.1) for R(z) and (2.2) forp, we obtain 

inwhichp = ps-p+. 
The key to subsequent physical interpretations is to consider theJlow force S defined 

as the sum of horizontal pressure force and momentum flux, per unit span, in the 
whole layer of fluid affected by the steady flow (cf. Benjamin 1966, $ 2 ) .  Thus S is the 
integral of p+pu2 with respect to height, from the bottom to the height H .  The 
contribution to S from the pressure in the stationary fluid above the uppermost 
stream-surface y = h is plainly +gp+ ( H  - h)2, and hence 

h 

S = Qgp+ ( H  - h)2 +J ( p  +pu2) dy = ggp, ( H  - h)2 + ( p  +pu2) y' dz. (2.5) 
0 

For substitution in this integral, p can be expressed by ( 2 . 2 )  and the momentum flux 
density pu2 by (2.4) with q2 = u2. We thus obtain at once 

S/g = gp+ ( H  - h)2+p+ ( H  - h) h + p p +  2p(H - h)h 

and after an integration by parts 

With regard to the terms of (2.6), note the identity 

2zy-gy2 = gz2-$(22-3y)2, 

including its instance with z = H ,  y = h. Note also, from the assumption of stable 
stratiscation in the reservoir, that p^ 2 0 and -p' is a non-negative function on 10, H ) .  
It therefore follows from (2.6) that  S is an absolute maximum when 

y = 22 3 9  (2.7) 

which case is the self-similar flow that is critical in a sense to be recalled presently. 
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The maximum value of S is 
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where \ (2.8) 

) z2dz)  = gSoHpzdz 

is the value of S for the fluid in a state of rest. This result generalizes the well-known 
principle recalled in 3 1 concerning open-channel flows of a homogeneous fluid, a case 
that is recovered by putting p+ = 0 and p' = 0 in [0, H ) .  

For the self-similar flow described by (2.7), we have from (2.4) that 

where p" = p"(y) = p"(4z) is written in place of p(z). From the definition u = d$/dy, 
$ ( O )  = 0, (2.9) can be used to find the stream-function $ ( y )  for this flow. 

A convenient example 

The example now introduced will be used later to illustrate other aspects of the 
problem. Let 

(2.10) 

where po and /3 are constants. I n  this case, (2.9) gives 

The velocity is thus a maximum a t  y = +/3+ O(P3) (i.e. just above the bottom of the 
channel if ,8 is small) and falls continuously to zero as y -+ 8. 

3. Generalization of the variational principle 
It has been shown that among all horizontal steady flows realizable by withdrawing 

fluid from a bottom layer of a reservoir with any given density stratification, the self- 
similar flow described by (2.7) uniquely achieves the maximum possible flow force S.  
This principle will now be extended to two-dimensional wavy flows, which plainly 
may be realized in certain circumstances, as when the flow passes into a uniform 
stretch of channel downstream of an obstacle. 

For any two-dimensional flow of a stratified but incompressible fluid, in which the 
velocity components are u and v respective to x and y ,  there is a stream-function $ 
by virtue of the fact that div (u, v )  = 0. Moreover, when the flow is steady, the stream- 
lines $ = const. coincide with the lines p = const. and so also, in the present descrip- 
tion, witjh the lines z = const. We may accordingly take y = y ( x ,  z )  as the dependent 

9 F L M  106 
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variable and use the fact that  $, p and R are functions of x alone. The velocity compo- 
nents are then given by 

1 

Y Z  

u = $v = $ ‘ ( x ) - ,  

Y = -.$$ = $’(z)- ,  Yx 

Y Z  

and it is helpful to write 
F(z )  = P@) [$’(2)12. 

I n  general this function is not prescribable a priori, but for all self-similar flows (see 
$4) it is proportional to  the function ofz expressed on the right-hand side of (2.9). 

On the assumption that yz > 0, the partial differential equation satisfied by y(x, x )  
may be found easily enough from the Euler equations of steady motion, or even more 
readily by transforming the equation introduced by Long (1953) for $(x, y), as simpli- 
fied by Yih (1965, p. 76) as an equation forpi$. It is 

Except that  the coefficient function F is undetermined, this equation resembles one 
that has been used previously for somewhat simpler problems of internal waves 
assumed to  arise from a base flow with uniform horizontal velocity (cf. Benjamin 
1967, equation (3.3), also Turner 1980 where an exact mathematical treatment is 
given). The boundary conditions to  be satisfied by the solution y of (3.1) are the 
kinematical condition at the bottom of the moving fluid, 

y(x, 0) = 0 v x ,  ( 3 4  

and the dynamical condition ensuring that a t  the top z = H - , with y(x, H - ) = h(z), 
say, the pressure is p+ (H-h ) .  When this pressure is alternatively expressed by (2.3) 
with R(H - ) = gp, I€, the condition is seen to  take the form 

I n  the case that p^ = 0 and consequently F 4 0 as zf H (see example in 8 5 ) )  the upper 
boundary condition becomes simply that yz remain bounded in the limit. 

For present purposes it is sufficient to  know that any steady wavy flow must be 
represented by a solution of (3.1) satisfying these boundary conditions, and our 
inability to prescribe the function F is in fact immaterial. The flow force S is again 
given by (2.5)) from whichp can be eliminated by means of (2.3) with q2 = u2+ v2. 

The result is 

which an integration by parts with use of (2.1) and (2.3) reduces to 
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By differentiation of this expression and by appeal to the fact that y satisfies (3.1) 
and the boundary conditions (3.2) and (3.3),  i t  is easy to confirm that S is independent 
of x, as is plainly required by momentum conservation. Equation (3.1) and the 
boundary conditions can be used further to  reduce the terms in (3.4) dependent on 
F(z ) .  Integrations by parts lead directly to 

(3.5) 

which recovers (2.6) in the case of x-independent flows. Furthermore, since S is 
independent of x and since the average of the second integral in (3.5) is zero over a 
wavelength of a flow periodic in x (or, more generally, is zero between any two 
stations where y is the same or where yz = O V Z E  [0, H ) ) ,  we can conclude from (3.5) 
that for a wavy flow 

where So (y) denotes the expression (2.6) with x-dependence of y now allowed. 
I n  the light of the discussion following (2.6), it follows immediately from (3.6) that 

for every wavy flow S is less than the value S,, realized uniquely by the special flow 
that (2.7) describes. The promised generalization of the variational principle is thus 
established. 

Note also that whatever the average j j ( z )  of y(x, z )  with respect to  x in a wavy flow, 
(3.6) implies that  S < So(y). This conclusion accords with a property well known 
from studies of other formulations of internal-wave problems, namely that when 
periodic waves can be superposed without energy loss on an originally horizontal 
flow, the process entails a reduction in flow force (cf. Benjamin 1966, $ 2 ) .  

S = averageoff!, (y), (3.6) 

4. Gradually varying flows 
Let us extend the ideas of $ 2  to  the case of steady flow from a reservoir into a 

channel with planform as illustrated in figure 2 .  The breadth b of the channel varies 
continuously with horizontal distance x, having a minimum value b, as indicated in 
the figure, and its variation is assumed to be so gradual that the velocity u of the fluid 
in the x-direction is the only component significantly entering the Bernoulli law 
(2.3). Moreover, u is taken to  be uniform across the span of the flow, although of 
course its value depends on height above the bottom. The theory to  be developed is 
thus a counterpart of the shallow-water approximation for gradually varying open- 
channel flows of a homogeneous fluid. 

Conservation of mass in the incompressible fluid can be expressed by considering 
an elementary stratum of vertical thickness Sz in the reservoir, from which the fluid 
flows into a sheet whose local thickness in the channel is Sy. If B is locally the mean 
horizontal velocity in the sheet, then 

Zb6y = SQ 

is the element of volume flux which must be independent of x when the flow is steady. 
Dividing by Sz and taking the limit as Sz -+ 0, we have 

uby’ = Q’, (4.1) 
9-2 
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/ 
FIGURE 2. Flow along a convergent-divergent channel. 

where the x-derivative &‘ is evidently a function of z alone. The expression (2.4) for 
pu2 is applicable as an approximation everywhere according to the present nssump- 
tions (cf. Yih 1969), and the elimination of u between it  and (4.1) gives 

in which h = b2/b:, h = g ( H )  and 

8 2 )  = ~ ( 2 )  [&‘@)I2/&. 
This equation for y(x) on LO, HI is complemented by the boundary condition y(0) = 0, 
and the dependence of the flow on its position along the channel enters through the 
parameter h which varies from 1 to co. 

The problem may alternatively be expressed as a second-order differential equation 
with a pair of boundary conditions. Dividing (4.2) by y’2 and differentiating with 
respect to  x, we obtain 

and the boundary conditions are 

(f/y’2)’ + 2h(y - 2) p’ = 0, 

Y(0,h) = 0, 2hp^{H - y(H, A ) }  [Y’(H, 412 = f(H - ). 

(4.3) 

(4.4) 

This form of the problem corresponds, of course, to the x-independent version of 
(3.1)-(3.3) with F(z)  = gf(z)/h. As noted earlier, in the case that p̂  = 0 and conse- 
quently f ( H - )  = 0, the second condition in (4.4) is replaced by a conditioii of 
regularity as x --f H ,  i.e. ly’(H-, h )J  < 03. 

The non-linear parametrized problem (4.3) and (4.4) is not amenable to comprc- 
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hensive treatment that  allows arbitrary specification of the coefficient function f. 
A somewhat perplexing situation is presented, moreover, in that f may not be a 
prescribable feature of the physical problem. It will generally depend on conditions 
imposed a t  the downst’ream termination of the flow, and there appears to be no simple 
argument delimiting the complete class of functions f that are physically relevant. 
However, by analogy with the corresponding problem for open-channel flows of a 
homogeneous fluid, we may reasonably look to the possibility of solutions with the 
following properties: 

(i) y ( z , h )  varies continuously with h > 1 (hence continuously with distance x 
along the channel). 

(ii) The solution in 1 < h < co has two branches which are confluent a t  h = 1 (i.e. 
the flow can be different a t  channel sections with the same breadth upstream and 
downstream of the minimum section). 

(iii) On one branch, y(z, A)  -+ z as h -+ 00 (i.e. the flow connects smoothly with the 
reservoir). 

SelJ-similar flows 

As was appreciated in 5 1, these special flows have previously been noticed to be 
solutions of the above problem. If we take 

Y = W Z ,  (4.5) 

which satisfies the boundary condition on the channel bottom, then equation (4.1) 
becomes 

Hence (4.5) is a solution with t.he required properties if 

and 

(4.7) 

The cubic (4 .6)  for K has a double root K~ = $ for h = 1; and it has two distinct 
positive roots for h > 1, one of which tends to 1 and the other to zero as h -+ CO. Thus 
the propertJies (i), (ii) and (iii) are all provided. In  fact, h = ~ ( h )  H is precisely the local 
depth of a ‘ choked’ flow of homogeneous heavy fluid along an open channel of the 
same planform h = h(x)  [i.e. the flow through a Venturi flume, which is subcritical 
(uz < gh) upstream and supercritical downstream from the minimum section]. 

It remains, of course, to demonstrate the significance of this simple result. Since 
other flows are generally possible from stratified reservoirs, there is a need to explain 
how and why self-similar flows might be generated. 

Regularity of solutions 

Let us examine conditions for a solution y[z ,  h(x)] of (4.3) and (4.4) to vary smoothly 
with distance x along the channel. Assuming h(x) to be continuously differentiable, 
differentiating (4.3) with respect to x and writing 

ay d h a y  @@,A)  = - = -- 
ax dx ah’ 
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we obtain 

Similarly, the boundwy conditions for q5 are seen from (4.4) to  be 

y ' ( H )  ( H -  h)  d h  
h dz' $(O) = 0, y'(1i) $ ( H )  - 2 ( H -  h) q5'(H) = (4.9) 

(Here the dependence of q5 and y on h is left implicit.) For a smooth solution of the 
parametric problem (4.3) and (4.4), the linear problem (4.8) and (4.9) for q5 must also 
have a solution for each relevant value of the parameter A.  Accordingly, although the 
issue is trivial in the case of self-similar flows, something about the general case may be 
learned by means of the Fredholm alternative principle. 

Inquiries on this basis have so far made limited progress. Some comparatively easy 
conclusions will be noted below, but the main proposition in view can only be stated as 
a conjecture, made plausible by the outcome of the linearized perturbation theory to 
be presented in 3 5 .  It is that  except for the self-similar flow described by (4.5)-(4.7), 
the system (4.3) and (4.4) has no continuous solution extending to the minimum 
section where h = 1, dhldx = 0, and being such that q5 + 0 there. 

At the minimum section, a possibility according to (4.8) and (4.9) is that q 5 =  0, in 
which case the solution y(z, A )  on the downstream side returns along the same branch 
as it approaches h = 1 on the upstream side. For reasons that will be noted in $7, 
this possibility has comparatively little interest, and it will not be considered further 
here. Thus, a t  h = 1, Q is required to be a non-trivial solution of the homogeneous 
version of the linear boundary-value problem (4.8) and (4.9). 

The meaning of this requirement is made clearer by transforming the left-hand sides 
of (4.8) and (4.9) so that the local height y of the stream surfaces is the independent 
variable. Thus, writing q5 = ~ ( y )  and using (4.2) together with (2.4),  one derives 

(4.10) 

The existence of a non-trivial solution of (4.10) is recognizable as being just the condi- 
tion for an infinitesimal wave of extreme length to be superposable without energy 
loss on a horizontal Aow that has the given velocity u = u(y) and density distribution 
p = p(y)  [cf. Benjamin 1966, $ 3.31. So the flow at h = 1 is critical in the usual sense of 
t,he term. This result is to  be expected, of course, because under the present shallow- 
water assumptions the condition that the flow have a smooth non-zero variation 
through the throat of the channel is evidently equivalent to  a horizontal flow a t  
h = 1 admitting a long-wave perturbation. 

It may straightforwardly be shown that, in all cases, the accelerating flow in the 
divergent part of the channel is supercritical in the sense that a free infinitesimal long 
wave propagating against it would be swept downstream. This property corresponds 
to h < y l ,  where y1 is the lowest eigenvalue of the homogeneous Sturm-Liouville 
problem related to (4.8) and (4.9) [i.e. with y in place of h and dh/dx = 01. The exist- 
ence of q5 everywhere downstream of the throat is hence ensured according to the 
Fredliolrn principle. 
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5. Flows close to the self-similar 
Again wit,h regard to  a channel of gradually varying breadth, we consider steady 

flows that are small perturbations from the self-similar flow defined by (4.5)-(4.7). 
The solution is now expressed in the form 

y = KZ + Ec(Z, K) (5.1) 

where the parameter K varies from O +  to  1, being related to h by (4.6), and E is an 
infinitesimal number. For simplicity of illustration the discussion refers particularly 
to  the example specified in (2.10), but the means will be indicated whereby the con- 
clusions can readily be extended to all other examples. 

In  the chosen example, equation (4.3) becomes 

(u/y’2)’ - 2h(y - 2) = 0 ( 5 . 2 )  

Y ( 0 , K )  = 0,  l Y ‘ ( 1 , K ) l  < (5.3) 

on 0 6 2 < I ,  with cr = f ( x ) / p o p ,  u(1) = 0; and the boundary conditions are 

I n  keeping with (5.1), the coefficient function a(z)  is represented as an infinitesimal 
perturbation from its form given by (4.5) for the self-similar flow, thus 

u(z) = & (1 - 2 2 )  + E T ( 2 ) .  (5.4) 

The perturbed flow is assumed to  originate from the same bottom layer in the reservoir, 
and so it is implied that r( 1) = 0. 

After substitution of (5.1) and (5.4) into ( 5 . 2 ) ,  linearization in E gives 

in which 

and 

{( 1 - 22) C’}’ + pC = ar’, 

,u = (27/4) = ~ / ( 1 -  K ) ,  

CL = (27/8) K 

have, like K ,  two positive values for each h > 1. The number p equals 2 a t  the critical 
section ( K = 6) and increases smoothly with h on the upstream side, with ,u --f 00 as 
h +- 00, K f 1.  On the downstream side, K < 8 and therefore p < 2. The required solu- 
tion 

Now, the homogeneous equation corresponding to (5.5) is Legendre’s equation, 
which has a non-trivial solution bounded on [ - 1,1], the respective Legendre poly- 
nomial p,(~), when p takes the succession of values m(m+ 1) (m = 1,2, ...). I n  view 
of the first boundary condition, only the odd-order polynomials which vanish a t  
z = 0 are relevant here, but they comprise a basis in L2(0, 1). Thus it is merely enough 
that r‘ E L2 for there to exist a representation 

of (5.5) must, of course, satisfy the boundary conditions ( 5 . 3 ) .  

m 

r’ = C a, P2n-l (z), u,, = (4% - 1) r’P2n-l (z) dx, (5 .6 )  
n= 1 so’ 

in which the sequence of coefficients (a,} E 12. Accordingly, the formal solution of 
(5.5) satisfying the boundary conditions is 
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which, since a is a bounded positive number, is meaningful except where the denomin- 
ator p - 2n(2n - 1) vanishes for any coefficient with a, + 0. [Note incidentally that, 
with these exceptions, the attribution r’ E L2 implies the existence of at least a weak 
solution <E H1(O, l) ,  and further regularity of < follows from that or r .  For example, 
if rEC1, then <€C2 and the ordinary differential equation (5.5) is satisfied pointwise.] 

The first conclusion to be drawn from (5.7) is that if the perturbed flow is to exist 
at a throat in the channel, where p = 2, then a, = 0 in the expansion (5.6).  On the 
downstream side, we have that p- 2n(2n- 1) < 0 for all n = 1 ,2 ,  ..., and thus 
the solution (5.7) remains meaningful everywhere in the supercritical region. On the 
upstream side, however, every one of the numbers 2n(2n - 1) 2 12 is crossed by p, 
and so (5.7) is valid everywhere only if a, = 0 for all n. The completeness of the basis 
{P2,-,} hence establishes the significant conclusion that no smooth solution of the 
shallow-water equations exists neighbouring on the self-similar $ow from the given reser- 
voir. Every perturbed steady flow suffers a t  least one local crisis where the shallow- 
water approximation ceases to be valid, however gradual the variation in breadth 
along the channel. 

This conclusion readily extends to all other examples of stable density stratification 
in the reservoir. For each, in place of (5.5), an equation with another Sturm-Liouville 
operator on the left-hand side will be posed, and if j3 > 0 the upper boundary condition 
will be given by linearizing the second of (4.4). By the Riesz-Fischer theorem, the 
set of eigensolutions for each respective Sturm-Liouville problem is complete as a 
basis in L2(0, H ) ,  and accordingly the argument proceeds as above. 

It deserves emphasis that a failure of the shallow-water approximation in some 
part of the flow does not necessarily invalidate the approximate solution (5.7) else- 
where. The nature of the local crises that  all flows neighbouring the self-similar have 
been shown to suffer will not be explored in any detail here, although it is an interest- 
ing matter that should be worth further study. The phenomena indicated are pre- 
sumably continuous processes according to a more accurate perfect-fluid model, but 
to describe them one needs to abandon the hydrostatic approximation for pressure 
and use explicitly x-dependent differential equations such as (3.1). A particular 
component with n > 1 in the Sturm-Liouville expansion of <(z, K )  will be better 
modelled in the vicinity of its crisis point, say x = 0, by a function of the form 
w, (x) [, ( x ) ,  where 5, (x) is the eigenfunction in question (e.g. P2n-1 (z )  above) and 
where, to a first approximation, a suitably normalized w, (x) will satisfy the equation 

k-2(d2W,/dx2) - x u’, = I ,  

in which k-2 is a positive parameter proportional to -dp/dx > 0 a t  x = 0. The 
specification k-2 = 0 recovers the unacceptable local singularity given by the shallow- 
water approximation. But with k-2 > 0 this equation has a solution that is bounded 
on -a < x < 00. Expressible in terms of Airy functions, the needed solution is 
-nGi(kx) in the notation used by Abramowitz & Stegun (1965, p.448). For large 
kx > 0, the solution is quickly asymptotic to -x-l; and for large kx < 0, 

W, - d( - kx)-i cos [g( - kx)% + an] - ~ - l +  0[( - kx)-Q]. 

The slowly diminishing but increasingly rapid oscillations may roughly simulate what 
in fact happens upstream of a crisis point. 
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6. The extremal property of supercritical self-similar flows 
We return to the flow-force principle demonstrated in 9 2, now considering it subject 

to the constraint that the flows competing for the maximum of S have passed through 
the throat into the divergent part of the channel and so have become supercritical. 
Let subscript 1 refer to any particular station downstream (i.e. A, > 1 ,  K, c Q ) ,  and 
let S,, denote the value of S given by substitution of y = K,Z in (2.6). Taking the 
expression (5.1) for y but no longer assuming B to be infinitesimal, we obtain from (2.6) 

- P €  e ( A  P C W +  /o"(-p')g:dz). (6.1) 

Here the coeficient of B is to be treated as the first variation &/g of S,/g among flows 
differing from the self-similar flow. 

On the other hand, when (5.1) is substituted and (4.6) is used, (4.2) leads to 

which by the definition of f(z) must be the same for all K such that y(z, K )  exists. Note 
that whereas local failures of the shallow-water approximation may occur upstream of 
the throat, (6.2) still holds everywhere downstream. Writing (6.2) as r = r,,+sF+ 
4e2f'+ ..., we-have that  fi = 0 at the throat where K = $ and therefore, in the limit 
B -+ 0,  also = 0 everywhere downstream where 0 < K c Q .  Since A l ~ l f ? l  = ~ 6 ,  
according to (6.1) and (6.2)) it follows that 

8, = 0. (6.3) 

Thus S,, is a stationary value for variations in the class of flows that are smooth a t  
and downstream of the throat. 

The study of second and higher variations is more complicated and will merely be 
outlined here. One proceeds by using (6.2)) in the form of the identity 

.. 
€ r ( K 1 )  = f r € ' { F ( $ ) - r ( K , ) } - k  0 ( E 3 ) ,  

to reduce the €-term in (6.1).  The results of the linearized theory summarized in 9 5 
are then used to evaluate 8,. It is thus shown without much difficulty that 8, < 0. 
Further estimates of S,  - S,, finally confirm that S,, is a maximum. 

7. Physical conclusions 
Even within the context of perfect-fluid theory, the general problem of selective 

withdrawal from a stratified reservoir is largely intractable because of the freedom 
evidently available in posing the downstream conditions that determine the flow. 



258 T. B. Benjamin 

While falling far short of a general solution, the preceding results nevertheless illum- 
inate various apparently central aspects of the problem, and on the basis of them a 
number of plausible interpretations can be made as follows about practical possibilities. 

( 1 )  First take the case of stratified fluid drawn steadily into a straight channel, as 
illustrated in figure 1 ,  and suppose that the flow is caused by the extraction of fluid 
through a slot near the bottom a t  the end of the channel. If there is a discontinuity 
of density a t  z = H (i.e. ,$ > O),  it is intuitively clear that the fluid above the interface 
will not be drawn into the slot when the extraction rate is sufficiently 8ma11, and SO 

a definite question arises about the limiting condition beyond which the fluid originally 
above x = H in the reservoir begins to be extracted. In  other words, what is the 
‘ drawdown condition ’ corresponding to given H, ,$ and the function p(z) on [0 ,  H ) ?  

According to the basic notation recalled a t  the end of $ I ,  a progressively larger flow 
force S must be manifested in the channel as the process of extraction causing the flow 
is intensified. But the results of $ $ 2  and 3 show that the maximum possible S achiev- 
able without the entrainment of fluid originally above x = H i s  realized by the critical 
self-similar flow with y = $2. This flow therefore comprises an upper limit for the 
possible drawdown condition. If drawdown does not occur until increased extraction 
raises S to S,,, then this flow is necessarily realized a t  the limit, and no further increase 
ofS is possible without drawdown. 

(2) The principle of maximum flow force was demonstrated in $5 2 and 3 without 
regard to the grading of the contraction through which the flow approaches the 
channel, but this factor evidently will determine whether the limiting flow is realizable. 
It is plausible that this flow does precede drawdown when the contraction is extremely 
gradual. Otherwise, as the known behaviour of open-channel flows suggests, an 
approach to the critical condition is liable to be interrupted by wave formation. [Note 
that in practice it is found difficult to produce a smooth open-channel flow in a slightly 
subcritical condition, say with 0.6 < F < 1, where F = u/(gh)g (cf. Binnie et al. 
1955) .] 

A wavy flow in the channel itself is a possible precursor of drawdown when the 
contraction is not gradual enough, but other possibilities are indicated by the findings 
of $ 5 .  Suppose that the contraction is very gradual but the sink of fluid at the end of 
the channel is so arranged that development of a self-similar flow is hindered (e.g. 
there are two slots extracting fluid). Then as S is raised towards the value a t  which 
drawdown begins, the flow may still differ appreciably from the self-similar flow, and 
consequently a local crisis giving rise to waves may occur some way upstream. 

(3) It must be acknowledged that the present estimate of the drawdown condition 
disagrees radically with the view of the matter proposed by Huber (1960), who 
calculated a critical condition a t  which the flow of a stratum of homogeneous perfect 
fluid towards a line sink first entrains a superposed layer of fluid with smaller density. 
The present interpretation also conflicts in principle, but is in its outcome more easily 
reconciled, with a calculation by Craya (1949) on a quite different, approximate 
basis. The two estimates were discussed by Yih (1965, p. l28),  who cited unpublished 
experimental results showing a large discrepancy with Huber’s theoretical prediction. 
I n  terms of the Froude number F for the flow in the lower stratum (with the density 
difference incorporated into F in the usual way), the drawdown condition was calcu- 
lated to be F = 1.66, whereas according to present ideas it is just F = 1. The former 
value can a t  once be rejected as a practical threshold for flows originating from a large 
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reservoir, becausa such flows with F > 1 and stagnant fluid above are impossible in 
the absence of a throat upstream-a feature not recognized in Huber’s model. The 
experimental drawdown condition reported by Yih is roughly F = 0.7, which is 
quite consistent with the present interpretation when allowance is made as suggested 
for the possibility of wave formation forestalling the idealized critical condition F = 1.  

(4) Cases where p is continuous a t  z = H provide a different interpretation. Note that 
whatever the flow force determined by the process of extraction at the end of the 
channel, there is a least value of H for which the required S can be realized. Then 
S = S, ( H ) ,  where S,  is the maximum of S for a given H ,  as given by (2.8). In  other 
words, for a given flow force, either a flow is developed having y = $2 in [ O ,  H ]  for the 
respective minimum H ,  or a deeper layer of fluid is drawn into motion. At least in a 
straight channel following a gradual contraction, it may therefore be expected that 
self-similar flows will tend to be realized whenever fluid is withdrawn from a contin- 
uously Gtratified reservoir. 

(5) As is known for open-channel flows of a homogeneous fluid, steady stratified- 
fluid flows along a convergent-divergent channel are likely to be in better accord with 
shallow-water theory than near-critical flows in a straight channel. A n  everywhere 
subnitical flow with dylax = 0 a t  the minimum section is a theoretical possibility; 
but, as the open-channel analogy shows, it is liable to be swept away in the divergent 
part of the channel unless the final outflow is specially restricted. The raising of down- 
stream flow force concomitantly with increasing the extraction rate will generally 
produce a flow that is critical at the throat and supercritical downstream. The prin- 
ciple demonstrated in 3 6 accordingly indicates that a self-similar flow will tend to be 
established in this situation, since it gives rise, a t  the downstream end of the channel, 
to a flow force that is the maximum possible without additional fluid being extracted. 
This conclusion must be regarded with caution, however, in view of the artificial 
feature that a layer of stagnant fluid deeper than +H lies above the fast, supercriticai 
flow. The possibility that instabilities of the Kelvin-Helmholtz type may precipitate 
a dissipative transition (hydraulic jump) back to subcritical flow, also the possibility 
of a super-critical drawdown condition such as found by Huber (1960)) suggests that 
the flows in question may not be realizable in a far supercritical condition. 

It is noteworthy that Wood (1968), considering a two-layer model, derived a self- 
similar flow in a convergent-divergent channel on the basis of the hypothesis that the 
shallow-water equations should have a smooth solution everywhere. His result agrees, 
of course, with the observations made in $ 5  4 and 5, but the present flow-force principle, 
rather than an arbitrary hypothesis of smoothness, is much more telling as a reason 
why the self-similar flow should be generated. Wood also presented some experimental 
results approximately confirming his prediction. 

(6) The present investigation has focussed on the case of flow in layers lying on a 
horizontal plane, but all aspects of the theory extend more or less immediately to the 
case of withdrawal from internal layers. The first boundary condition in (4.4) has 
to be replaced by another, akin to the second of (4.4), applying at the lower interface 
with stagnant fluid, and the self-similar solution corresponding t o  (4.5)-(4.7), but 
now defined on [ - H,H] ,  say, is appropriately modified. The example considered in 
$ 2, for instance, extends precisely to a solution like (5.1) on [ - I, 11, and the even as 
well as odd Legendre polynomials are then required to express an arbitrary perturba- 
tion in the manner of (5 .6 )  and (5 .7 ) .  
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